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Abstract 

The relation between the diffraction and the distribution 
of the linear dimensions of the ordered domains in sub- 
stitutionally disordered polycrystalline material is 
elaborated. It is shown that, contrary to some theor- 
etical expectances and experimental efforts, the funda- 
mental reflections do not broaden (negligible change of 
cell dimensions with ordering being assumed). The for- 
bidden reflections, on the contrary, are shown to be 
suitable, through their broadening, for the investigation 
of this disorder. The integral breadth is calculated for 
three important types of size distribution. The possi- 
bility of obtaining the average domain size from the 
integral breadth is analyzed in relation to these distri- 
butions. The variance may provide a second parameter 
for the size distribution, thus allowing selection among 
different plausible types. Therefore its relation to the 
size distribution is also elaborated. 

1. Introduction 

The relation between polycrystalline diffraction line 
profiles and the size distribution of the ordered domains 
in substitutionally disordered crystals is elaborated in 
this paper. Most of the interesting cases are cubic. Thus 
our derivations refer explicitly to cubic crystals. 

2. Domain-size distribution and related functions 

First, we shall derive relations, not to be found in the 
literature, between the size distribution and certain 
other probability functions. These will allow us to 
express the diffracted intensity in a compact form. 

Let us take a set of N o symmetrically equivalent posi- 
tions in the unit cell. When occupied by more than one 
type of atom, the latter may be arranged in different 
manners in the different unit cells of the same crystal. 
The disorder thus arising is called substitutional dis- 
order. A group of neighbouring unit cells with the same 
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arrangement is called a domain. The arrangement in 
neighbouring domains is, of course, different. 

In what follows, the occurrence of the different types 
of domains in a crystal will be taken as of equal prob- 
ability. Furthermore, the change of the cell dimensions 
with the ordering will be assumed to be negligible. Sub- 
stitutional disorder complying with these plausible 
assumptions will be referred to as 'our' type of disorder. 

Let N be the number of different possible arrange- 
ments, i.e. of different domain types. When the equiv- 
alent positions are occupied, for example by two types 
of atoms so that there are N o of one and N o - N" of the 
other, then evidently (No) 

N =  N" " 

Let us denote by M a linear dimension of a domain, 
parallel to the Bragg vector H of the reflection under con- 
sideration, taken in the unit of the reticular distance D, 
parallel to H. (In cubic lattices, there exists for every 
Bragg vector a family of reticular lines parallel to it.) 
Thus M is a dimensionless number! If b,, b 2, b 3 are the 
basic vectors of the reciprocal lattice, and h, k, l the 
(whole-number) indices of the reflection so that 

then 
H = h b  I + kb 2 + lb a, (2.2) 

h 2 + k 2 + l 2 
D = d, (2.3) 

n 2 

as may easily be seen. n is the common divisor of h, k, 
I, i.e. the order of the reflection, and d the 'true' inter- 
planar spacing of the lattice planes perpendicular to H. 

M may vary in one domain along its cross section 
perpendicular to H, and it may take different sets of 
values for the different domains even of the same 
crystal, as the domains are not, in general, of the same 
shape and size. Let q(M) be the relative number of 
occurrences, referred to unit range d M =  1, of M in one 
crystal. It will be called size distribution. 

Let us call d the reciprocal of the average domain 
size, i.e. o f  the average value o f  M. Thus 

oo 

1/A---- f Mq(M)dM.  (2.4) 
0 

As M, A is dimensionless. 
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For the derivation of the relation between q(M) and 
diffracted intensity, it is convenient to make use of the 
probability function P(m), meaning the probability that, 
taking the arrangement at a randomly selected point, 
the same arrangement will be found at a distance m 
from it. m is taken in the same units as M. 

P(m) may be expressed as the sum of products of 
two factors. One is the probability that, / f there  are v 
changes of arrangement along the segment m, the 
arrangement at a distance m will be the same as at 0. 
The other is the probability that the number of these 
changes will be v. The product of these two factors, 
summed over v, evidently gives P(m). The reasoning is 
tedious but elementary, and leads to 

P(m) = f P(ml) dml 
m 

+ - - Z  + 1  
N ~=2 ( 1)~-1 

x f p(m 0 q(m2).., q(mv+ 1) dml dm2 ... dmv+ 1 / . 
) 

(2.5) 
Here oo 

p(ml)  = A f q(M)dM, (2.6) 
m l  

and the integrals are to be taken 

over from 0 to 

~_mvJ 

m t m - - m  l 

m - -  ( m  I + m 2 + . . .  + m v _  1 

and over my+ 1 from [m - (m I + m 2 + ... + my)] to ~ .  

3. Polycrystalline disorder diffraction 

In what follows, the crystals will be assumed to be large 
enough not to cause particle-size broadening. The 
assumption of cubic crystals is maintained. A common 
function q(M) is assumed to describe the size distribu- 
tion parallel to H, for all crystals of the polycrystalline 
material. This assumption is discussed in §7.1. 

In the cubic case, it is possible to choose for every 
reflection such new basic lattice vectors ai, a2, a3, that 
al is parallel to H and has length D, and that (al a2 a3) 
= a 3, where a is the edge-length of the original cubic 
unit cell. This choice makes the calculation very simple, 
as now two of the new basic reciprocal vectors (b2 and 
b3) will be perpendicular to H. 

In this manner, one arrives at the expression of the 
diffracted intensity: 

I(s) = ~ J(m) cos (2rims) - K(m) sin (2rims) (3.1) 
m 

(see, for example, Szab6, 1975a), where 

(2  sin 0 d )  s = -- D; (3.2) 
2 

0 is half of the angle of scattering; 2 is the wavelength; 
J(m) and K(m) are the real and imaginary parts of the 
average of * Fj,j2j3F~u2j ' for a given value of 

- -  " f  • 
m - j  i - J l ;  (3.3) 

the j ' s  are the whole-number coordinates of the lattice 
points; F is the structure amplitude of the unit cell 
designated by its indices; and the asterisk means 
complex conjugate. The summation over m, here and in 
the following, is to be understood to mean from - ~  to 
OO.  

J(m) + iK(m) can easily be expressed by P(m), 
taking all possible values of the product of structure 
amplitudes with their respective probabilities, and q 

summing them. The probability for Fj,s2j ' being the 
same as Fj,i2j3 is P(m); and for FAjd3 being a certain 
one among those which are different from Fj, j2j~ the 
probability is [1 - P ( m ) ] / ( N -  1), as can easily be 
seen. The result is 

K (m) = 0, (3.4) 

N P ( m ) -  1 N 
J(m) = (IFI  2) + [1 -- P(m)] I ( F ) I  2. 

N - - 1  N - - 1  
(3.5) 

Here 

1 N 

( F )  = -~- Z F , ,  (3.6) 
r t = l  

1± 
(~FI2)  = -  A IF.~ 2 , (3.7) 

n = l  

the index n designating the different possible arrange- 
ments in the unit cell. 

Substituting (3.4) and (3.5) into (3.1), 

N P ( m ) -  1 
I ( s ) =  m~ N - -  1 ( I F I 2 )  

N 
+ [1 - P(m)] 

N - 1  
I (F) I  2} cos (2rims). (3.8) 

To be explicit, let us take here the case of 
substitution in only one set of equivalent positions. The 
generalization to substitution in more than one set is 
trivial (Szab6, 1975b). 
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The structure amplitude of a unit cell with the nth 
type of arrangement may be written as the sum of two 
terms: the first referring to the atoms of the substituted 
set, and the second to all the other atoms of the unit 
cell: 

Fn = ~ f , ,  t exp (--2niHrt) + C. (3.9) 
t 

The cardinal numbers t designate the different positions 
in the se t ; f  n. t is the scattering amplitude of the atom in 
the tth position of the nth type of cell; and rt is its 
position vector. The sum over t is to be taken from 1 to 
N o. C is the contribution of the atoms which do not 
belong to the set. It does not have the index n, as it does 
not change with the change of arrangement in the 
substituted set. 

The average of F,, over n is 

( F )  = (~t f n, texp (--2niHrt)~ + C 

= ( f )  Y exp (--2niHrt) + C. (3.10) 
t 

Here we could write ( f )  instead of (fn)t because, on 
the basis of our assumptions, the latter evidently 
becomes the same for every t, and the averaging over n 
makes the index n superfluous. 

Forbidden reflections are those for which 
~.texp(--2niHrt) = 0 and C = 0, i.e. which in the 
absence of substitution would not occur. The other 
reflections are called fundamental, as they occur in the 
presence as well as in the absence of substitution. Thus 
from (3.10), 

{ ~} / f°rbidden / 
( F )  for the (fundamentalJ reflections. (3.11) 

The displacement of the centroid of the reflection: 

1/2 / 1 / 2  

( s ) : _ , / 2  j" sl(s) ds/_{/2 I(s) ds = O (3.12) 

for the fundamental as well as for the forbidden reflec- 
tions. In other words, no centroid displacement occurs 
with our type of disorder, as already stated in a less 
general type of treatment (Szab6, 1975a). 

and 

/max = I ( 0 ) =  (IFI 2) 
m 

N P ( m ) -  1 

N - - 1  

Thus 

+ (F ) I  2 
N 

N - -  1 Z  [1 -- P(m)]. (4.2) 
m 

( N -  1)(IFI 2) 

(IFI 2) •[NP(m)--  11 + I(F)I 2 N Z  [ 1 - P ( m ) ]  

(4.3) 

The integral breadth in the scale of the scattering 
angle 20, may be obtained (in radians) from fls on 
grounds of (3.2): 

2 
f12o = fl~. (4.4) 

D cos 0 s 

Here 0~ is the angle of reflection or Bragg angle. 
From (4.3), because of (3.11), 

N - - 1  
fls (forbidden reflections) = . (4.5) 

[ NP(m) -- 1] 
m 

In the case of the fundamental reflections, the second 
term in the denominator of (4.3) becomes infinite, and 
therefore 

fls (fundamental reflections) = 0. (4.6) 

(4.5) and (4.6) lead to the conclusion, arrived at 
already in the approximate treatment of Szab6 
(1975a,b), that in the case of our type of disorder, 
broadening may occur only in the forbidden reflec- 
tions, whereas the fundamental reflections remain sharp 
(as to the variance, see §6). 

(4.5) shows the dependence of fls on P(m). The latter 
is determined by the domain-size distribution q(M) 
through (2.5) and (2.6). In what follows, broadening 
will always refer to the forbidden reflections, unless 
stated otherwise. 

4. Integral breadth 

The integral breadth fls is the quotient of the integrated 
intensity and the maximum intensity. From (3.8), 
taking into account that P(0) = 1, the integrated 
intensity is 

1/2 

f I ( s )ds=  (IFI2); (4.1) 
- 1 / 2  

5. Integral breadth for three important size 
distributions 

Wilson (1958) quotes two domain-size distributions 
given by L. Landau and I. M. Lifschitz. We shall write 
them in our notation and units. One corresponds to the 
growth model of domain formation: 

q(M) = A exp ( -AM) ,  (5.1a) 
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and the other to the nucleation model: 

q(M) = (2A) a M exp ( -2Am) .  (5.1b) 

from (5.2a,b,c), one by one, into (4.5). Substituting 
(5.2a), 

( N )  
In addition, there might be some theoretical interest 1 - exp A N - 1  

in the model of a constant domain size: fl~ = (5.3a) 

q(M) = 6 ( M -  l /A), (5.1c) 1 + exp A 
N - 1  

where 6 is the Dirac delta function. Layer-type domain 
patterns can have such distributions for all the Bragg 
vectors at the same time, although with different values 
of A for the different Bragg vectors. 

P(m) will now be calculated for these three distri- 
butions, using (2.6) and (2.5). Thus for case (a), 

P(m) = exp (--Am) 1 + -~- v--2 ( N - -  1) v-1 

+ 1] (Am)"l 
v! ) 

1N_I ( N )  
= m + ~ exp Am . (5.2a) 

N N N - - 1  

For case (b), 
[ 

e(m) = exp (--2Am) { (1 + Am) 

+--N v=2 (N- -  1) v - I  + 1 

1 (2Am) 2v-1 (2Am) 2v l (2Am)2V+']] 
X + ~ +  

2 ( 2 v -  1)! (2v)! 2 (-~v+ ~ ]J 
2Am 

= exp ( - 2 A m )  cos ( N -  1) 1 

( N - I ) E - ( N - 1 ) .  2Am __~} 
+ 2 N ( N - 1 )  ~ sm ( N -  1)" + " 

(5.2b) 

For  case (e), we obtain for P(m) a continuous function 
which is linear in the intervals between the points m = 
O, 1/A, 2/A, ..., k/A,. . . .  In the first interval, the deriva- 
tive of P(m) is negative, and changes sign and 
diminishes in absolute value from interval to interval. 
Designating P(m) in the interval (k - 1)/A < m < k/A 
by Pk(m), one obtains 

1 1 
Pk(m) = --77. + (--1) k 

N ( N -  l )  k - I  / V  

k - - A m  
+ (--1) k-1 (5.2e) 

( N - -  1) k- l 

In order to obtain the expression of fl~ for these three 
cases, we have to substitute the expressions of P(m) 

Substituting (5.2b), 

exp (2A) + exp (--2A) -- 2 cos 
2A 

( N -  1) -~ 

N -  2 2A 
exp (2A) - exp ( - 2 A )  + 

( N -  1) ½ 
sin 

( U - -  1) -~ 

(5.36) 

The expression resulting from (5.2c) cannot be given in 
closed form, but may be evaluated by computer 
methods. 

It is interesting to note that Wilson (1943) used for 
Cu3Au the expression (5.2a), with N = 4, and in spite 
of this his integral breadth formula (11) differs from 
our (5.3a). Namely,  expressing his quantity 6 by our A, 
using our unit of length D, and transforming from the 
scale of 20 to that of s, his equation (11) becomes 

fls = ]A, (5.3a)' 

which is only an approximation to our (5.3a), for A .~ 
1. The origin of this difference is an approximation pro- 
cedure used by Wilson. 

In order to calculate A from an experimental value of 
fls, one would have to know the type of the distribution 
q(M) and use the corresponding formula of fls. Let us 
make the plausible assumption that q(M) is of the 
general type given by Lifschitz (see Wilson, 1958), i.e. 
that it has some intermediate form between the limiting 
forms (5.1a) and (5.16). Then A obtained from the 
given fl~ will be of some intermediate value between 
those calculated from (5.3a) and (5.3b): A a and A o 
respectively. Let us now compare A,  and A b. 

In the limit of large domains, i.e. fl~ ,~ 1, (5.3a) and 
(5.3b) may be approximated as 

and 

N 
fls - A a ,  (5.4a) 

2 ( N - -  1) 

2N 
f l s - - - -  Ab 3N-- 4 

respectively. From these two equations, 

Aa/Ab = [4 /3 /  for N = . 

(5.4b) 

(5.5) 
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For the comparison of A a and A b in the opposite 
limit of small domains, i.e. of large/is, let us take a con- 
crete numerical example: fl~ -- 0.25. This corresponds 
to extremely small domains! 

For this value offl~, 

for =,11,0 9 ,3 , (5.6) 

i.e. virtually the same as in the other limit. 
Thus when we are entitled to assume the Lifschitz 

type of distribution, without knowing its exact form, it 
may be sufficient to calculate Za, and remember that 
this can differ from the correct value of A at most by a 
factor 1.3 to 1.5, depending on N, for N > 4. This pro- 
cedure may be carried out for different Bragg vectors 
(different reflections), thus giving A in this approxima- 
tion for different crystallographic directions. 

6. The moments of l(s) 

For the selection of the correct function q(M) among 
different possible forms, for example among the dif- 
ferent forms of the Lifschitz type, one parameter is not 
sufficient. For instance, the choice between the forms 
(5. la) and (5. lb) would require the determination of at 
least two parameters. 

fls alone gives only one parameter. More information 
could be gained only by a more detailed consideration 
of the intensity distribution I(s): 'line profile analysis'. 
In principle, the different moments of I(s) can serve for 
this. Let us now analyze the information they can 
provide. 

The 0th and the 1 st moment do not give anything for 
q(M). Tacitly they have already been implied before 
dealing with q(M). The 0th moment is the integrated 
intensity. Its dependence on hkl is taken to check the 
crystal structure. The 1st moment, divided by the 0th, 
is the centroid displacement. The vanishing of this 
proves that K(m) --- O, i.e. that the type of disorder is in 
harmony with our assumptions. Namely, in case of 
K(m) 4: O, (3.12) would not hold. 

The 2nd moment, divided by the 0th, is the variance. 
This gives one parameter, as does the integral breadth. 
Determining both, we can obtain two parameters for 
q(M). We would like to suggest the carrying out of 
such determinations, in view of the important new 
knowledge which could be gained in this manner. 

The variance, 

1/2 / 1/2 

W s= f s 2I(s) d s / f  I(slds,  (6.1/ 
-1/2 / -1 /2  

may be expressed by P(m). From (6.1), (3.8), (3.11), 
and (4.1), the variance for the forbidden reflections is 

1 
W s (forbidden reflections) = ~ + 

rc2(N - 1) 
(x) ( - 1 )  m 

x ~ .  [NP(m)-- 1] 
m 2 

m=l (6.2) 

Note that the summation over m is to be carried out 
from 1 to c~, unlike in (3.8). The even parity of P(m) 
has been exploited in this. 

We have still to see whether W~ is 0 for the funda- 
mental reflections, as is fls. From (6.1), (3.8), and (4.1), 

1 ~{ 
Ws= ~ + z~Z(N - 1) 7 ~  [NP(m)-- 11 

I(F)I2 } (-1)m 
+ [1 - e ( m ) ]  N ( IFI21 m 2 (6.3) 

For many fundamental reflections, for example for all 
those of Cu3Au, and for part of those of substituted 
spinels, I(F)12 = (IFI21. In such cases, from (6.3), 

1 ~ (-1) m 
W s (fundamental reflections) = ~ + - 7  m------ S -  - O. 

m=l (6.4) 

For those fundamental reflections for which I (F)I  2 4= 
(LFL2), W s will not be strictly 0, but will still be very 
small, as brief consideration will show. Thus it cannot 
be obtained with any acceptable precision from the 
variance of the experimental line profile, in which the 
term due to the so-called instrumental profile over- 
whelmingly predominates in this case over the term due 
to the disorder. 

Thus disorder may be investigated through the deter- 
mination of the variance of forbidden, but not of funda- 
mental, reflections. This statement corroborates the 
same conclusion of Szab6 (1975a), arrived at in a less 
general treatment. In opposition to this, Grimes (1968) 
asserted the broadening of certain fundamental reflec- 
tions, and suggested the investigation of disorder 
through the variance ofthe latter. Based on this, Grimes, 
Hilleard, Waters & Yerkess (1968) performed such 
determinations. Both the theoretical assertion of 
Grimes as well as the experimental work of Grimes et 
al. have been refuted by Szab6 (1975a,b) in a less 
general type of treatment. This refutation has now been 
corroborated. 

Moments higher than the second would, of course, 
give further information on q(M). It is easy to show 
that, similarly to the integral breadth and to the 
variance, for the higher moments, too, only the for- 
bidden reflections may come into consideration. How- 
ever, their determination with the necessary precision 
would be extremely difficult. It seems very improbable 
to be able, at the present, to make practical use of them. 
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7. On some assumptions used in our derivations 

7.1. Crystals with different domain patterns 

In the particle-size problem, Laue (1926) assumed a 
common crystal shape and size in the polycrystaUine 
sample. The same stringent assumption was implied 
tacitly by Bouman & Wolff (1942), and by Stokes & 
Wilson (1942, 1944). The averages occurring there do 
not refer to different crystals but to the distribution of a 
linear dimension within their common shape and size. 

The effect of a distribution of shapes and sizes was 
taken into account by Wailer (1939). But there the tacit 
assumption was made that crystals belonging to every 
one shape and size occur uniformly distributed over all 
the spatial orientations, which is still a rather stringent 
assumption. 

The assumption which is implicit in our formulae is 
that the distribution q(M) be the same for every crystal 
of the sample. This condition is not so stringent as the 
former. Namely, it does not require every crystal to 
have the same domain pattern. For crystals large 
enough, as they have been supposed to be, i.e. contain- 
ing a great number of domains, its fulfilment is 
evidently possible and probable even for very different 
domain patterns in the different crystals. 

7.2. Fluctuating cell composition 

We have still to consider the frequent case when the 
numbers of the different atoms in the same set of equiv- 
alent positions are not the same in every unit cell, as 
assumed in our calculations, but vary randomly 
between some limits. The number N" defined in §2 then 
means an average and its value will be a fractional 
number. This problem was discussed by Szab6 
(1975b). The lihear interpolation suggested there evi- 
dently holds also for the present calculations 

8. Conclusions and summary 

Our formulae and considerations may form the basis 
for the investigation of the distribution of the sizes of 
ordered domains in substitutionally disordered crystals. 
The experimental determination of this distribution 
would give an insight into the formation of these 
domains, into the relative importance of nucleation and 
growth. Until now, no adequate diffraction theory 
existed for this. 

The relation between polycrystalline diffracted inten- 
sity profile and domain-size distribution has been de- 
rived, and the centroid displacement, the integral 
breadth, and the variance calculated. 

(1) The centroid displacement has been shown to be 
0 for all reflections. 

(2) The integral breadth of the forbidden reflections 
has been shown to be a suitable parameter for the 
domain-size distribution, in contrast to the funda- 
mental reflections, the integral breadth of which always 
vanishes. 

(3) The variance of the forbidden, but not of the 
fundamental, reflections, determined in addition to the 
integral breadth, may give a second parameter for the 
domain-size distribution. It is urged that such measure- 
ments be carried out, at least in some simple cases, in 
view of the important knowledge to be gained. 

(4) Detailed integral breadth calculations have been 
carried out for three models of the size distribution. An 
estimate has been given for the error in the determina- 
tion of A if the distribution is of the Lifschitz type but 
its exact form is not known. 
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